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Abstract

Empirical researchers may wonder whether or not a two-way �xed e¤ects estimator (with

individual and year �xed e¤ects) is good enough to isolate the in�uence of common shocks

on the estimation of slope coe¢ cients. Otherwise, they need to run the so-called panel factor

augmented regressions instead. There are two pre-testing procedures available in the literature:

The use of the number of factors and the direct testing of estimated factor loading coe¢ cients.

This paper compares the two pre-testing methods asymptotically. Under the alternative of the

heterogeneous factor loadings, both pre-testing procedures suggest to use the commonly corre-

lated e¤ects (CCE) estimator. Meanwhile under the null of the homogenous factor loadings, the

pre-testing method used by the number of factors always suggests more e¢ cient estimations.

By comparing asymptotic variances, this paper �nds that when the slope coe¢ cients are homo-

geneous with homogenous factor loadings, the two-way �xed e¤ects estimation is more e¢ cient

than the CCE estimation. Meanwhile the slope coe¢ cients are heterogeneous with homogenous

factor loadings, the CCE estimation is, surprisingly, more e¢ cient than the two-way �xed ef-

fects estimation. By means of Monte Carlo simulations, we verify the asymptotic claims. We

demonstrate how to use the two pre-testing methods by taking an empirical example.

JEL Classi�cation Number: C33

Keywords: Two-way �xed e¤ects estimator, Panel factor augmented estimator, Factor number,

Maximum test, CCE estimator
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1 Introduction

The following two-way �xed e¤ects (TFE) regression has been the most popularly used panel model.

yit = ai + �
0xit + Ft + �it; (1)

where ai is an individual �xed e¤ect for i = 1; :::; n; and Ft is a common shock to all individuals

at time t = 1; ::; T , which is called a year or time �xed e¤ect. If the common shock Ft; which

can cause the cross-sectional dependence among yit; in�uences on each individual di¤erently, the

two-way �xed e¤ects regression is not good enough to isolate the e¤ect from the common shock.

In this case, the factor augmented regression is used instead.

yit = ai + �
0xit + 


0
iFt + "it; (2)

where Ft is no longer a single factor but can be a (r � 1) vector of latent common factors, and 
i
is a (r � 1) vector of factor loadings. More importantly, the (1� k) vector of regressors xit may be
possibly sharing the same common factors. That is, the regressors can be modelled by

xit = bi + �iFt +	iGt + x
o
it; (3)

where Gt is a (1�m) vector of other common factors, �i is a (k � r) matrix of factor loadings, 	i
is a (k �m) matrix of factor loadings, and xoit is a pure idiosyncratic term.

When the factor loading coe¢ cients in (2) are heterogeneous (
i 6= 
); the TFE estimator

has the following two problems: First, when �i is correlated with 
i, the TFE estimator becomes

inconsistent since xit is correlated with �it. Second, even when �i is not correlated with 
i; a typical

panel robust variance is no longer consistent due to the existence of the cross-sectional dependence.

The solution is rather simple. Once including the common factors as additional regressors, one

can exclude the source of cross-sectional correlation from the estimation. Under some regularity

conditions, the latent common components 
0iFt can be approximated as the linear combination

among the sample cross-sectional averages of xit and yit: The so-called �Commonly Correlated

E¤ects�(CCE hereafter) estimator, which was simple and intuitive estimation method proposed by

Pesaran (2006), has been popularly used in practice and STATA commands are available online.

Along with the CCE estimator, empirical researchers also have used �Iterative E¤ect�(henceafter IE)

developed by Bia (2009). The IE estimator approximates the latent common factors to regression

errors by using Principal Component (PC) estimation. See Reese and Westerlund (2018) and

Hayakawa, Nagata and Yamagata (2018) for more recent reference, and Chudik and Pesaran (2015)

for a recent survey on this literature.

Even though there are many good estimators available and more applied researchers have con-

sidered panel factor augmented estimators as the alternative of the TFE estimator, in practice
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empirical researchers have still used two-way �xed e¤ects estimation. Naturally, to encourage

empirical researchers to use panel factor augmented estimators, pre-testing procedures become

desirable.

The purpose of this paper is to provide �asymptotic�comparison among pre-testing procedures.

There are broadly three types pre-tests available in the literature. The �rst two types are proposed

by Bai (2009): Hausman type test and the use of the number of common factors. The Hausman

type test examines whether or not panel factor augmented estimators share the same probability

limit of the TFE estimators. A pre-test with a �xed T is considered by Westerlund (2019). However

as CRT (2015a) point out, the Hausman type test may fail when �i is not correlated with 
i: In

this case, the TFE shares the same probability limit with the CCE or IE estimator. The second

type method is the use of the number of common factors. As Bai (2009) and Parker and Sul (2016)

point out, the TFE residual does not include any signi�cant factors if 
i = 
 for all i since the

time �xed e¤ects successfully eliminate unknown common factors. Throughout the paper, we will

call this method �BPS�. The last method is a direct testing proposed by CRT (2015b). The CRT

method tests whether or not the maximum of estimated 
̂i is signi�cantly di¤erent from sample

cross-sectional averages.

We starts to review three types of pre-tests by comparing pros and cons of each pre-test. Among

them, the direct testing method suggest by CRT (2015b) is the most powerful test in the sense that

even when 
i = 
 for all i except for just one unit, the direct testing method detects this deviation

since this CRT method is based on the maximum value of the estimated 
̂i. We introduce this local

heterogeneity more formally to evaluate these tests asymptotically. Interestingly, we �nd that BPS

method always leads to more e¢ cient (in terms of asymptotic variance) estimation.

Even though it is not directly related to this literature, the literature of testing cross-sectional

dependence is indirectly related. See Pesaran (2004, 2015), Ng (2006), Pesaran, Ullah and Yamagata

(2008), Sara�dis, Yamagata and Robertson (2009), Baltagi, Feng and Kao (2011), Sara�dis and

Wansbeek (2012) and Baltagi, Kao and Na (2013) for recent references.

The rest of the paper is organized as follows. Section 2 provides a short review and the notion

of local heterogeneity of factor loadings. We also provide a formal pre-testing procedure for BPS

method. Asymptotic results under homogeneity and heterogeneity of slope coe¢ cents are discussed

in Section 3. Key theorems and some important remarks are provided. Section 4 includes Monte

Carlo results and one empirical example. Section 5 concludes. All technical proofs are in Appendix.

2 Extant Pre-Testing Procedures

This section provides a short review on extant pre-testing procedures for panel factor augmented

regressions �rst, and then discusses how to evaluate each pre-testing procedure, next. We start
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this section by asking the following question: Should a panel factor augmented regression run when

regression errors are cross-sectionally dependent? If so, all tests for cross-sectional dependence

can be treated as pre-testing for a panel factor augmented regression. Suppose that regression

errors are spatially correlated. Then a good test statistic for testing the cross-sectional dependence

must detect this spatial correlated, but it does not automatically imply that the factor augmented

regression is the right one to run. In the sense, we consider the following three pre-testing procedures

in this section.

2.1 Hausman-type Test

Here we assume the true data generating process of yit is given by

yit = ai + �
0xit + uit; with uit = 
0iFt + "it: (4)

If 
i is correlated with �i; which is the vector of factor loadings in regressors in (3), then the

regressors, xit; are correlated with the regression error, uit even when both 
i and �i have zero

means. De�ne ~yit as the deviation from its time series mean. Further de�ne _yit and _xit as

_yit = ~yit �
1

n

Xn

i=1
~yit; : _xit = ~xit �

1

n

Xn

i=1
~xit:

That is, _yit = yit � T�1
PT
t=1 yit � n�1

Pn
i=1 yit + n

�1T�1
Pn
i=1

PT
t=1 yit: Then the two-way �xed

e¤ects regression can be rewritten as

_yit = �
0 _xit + _uit with _uit =

�

i �

1

n

Xn

i=1

i

�
~Ft + _"it: (5)

If 
i 6= 
; then the TFE estimator in (5) becomes inconsistent since _xit is still correlated with _uit:
Meanwhile either the CCE or the IE estimator is consistent. Bai (2009) points out this di¤erence,

and proposes a Hausman-type test to detect whether or not 
i = 
:Westerlund (2019) extends this

test to the case where the time series observation is small.

However, this test is not airtight in the sense that the TFE can be consistent even when 
i 6= 
:
If 
i is not correlated with �i; or simply regressors do not have any common factors, then both TFE

and factor augmented estimators are consistent. CRT (2015a) point out this issue, and formally

show that the Hausman-type test for testing 
i = 
 is not consistent asymptotically. Therefore, we

do not consider this test in this paper.

2.2 CRT Test

The next test is the maximum value test proposed by CRT (2015b). Interestingly, CRT (2015b)

consider only the case of heterogeneous slope coe¢ cients. Instead of (2), CRT consider the following

factor augmented regression.

yit = ai + �
0
ixit + 


0
iFt + "it (6)
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It is important to note that the CRT test becomes valid only without imposing the homogeneity

restriction of �i: The reason is straightforward. When �i = � for all i; it does not matter whether

or not one imposes the homogeneity of �i in (6). A serious problem eixsts when �i 6= �: Assume we
impose the homogeneity restriction under �i 6= � for some i: Then the factor augmented regression
in (6) becomes

yit = ai + �
0xit + uit; with uit = (�i � �)0 xit + 
0iFt + "it: (7)

Substituting (3) into (7) results in

uit =
�
(�i � �)0 �i + 
0i

�
Ft + (�i � �)0 �iGt + (�i � �)0 xoit + "it: (8)

Even when 
i = 
; the regression error, uit; includes the heterogeneous factor loadings of �i and

�i since �i 6= �: Hence for the consistency of the test, the homogeneity restriction should not be
imposed in (6).

Here we provide a step by step procedure for CRT test for the null hypothesis of1

H0 : 
i = 
: (9)

Step 1 Obtain the regression residuals ûit = yit � âi � �̂
0
ixit from the following regression: That

is, run the CCE estimation for each i.

yit = ai + �
0
ixit + �

0
x;i�xt + �y;i�yt + �it; (10)

where �xt = n�1
Pn
i=1 xit and �yt = n

�1Pn
i=1 yit:

Step 2 Assume a single factor, and estimate 
i by using PC analysis. Let 
̂i be the PC estimator.

Then construct the following Mahalanobis distance.2

Oi =
�

̂i � �̂


�2
=�̂
 ; (11)

where �̂r and �̂
 are sample mean and variance of 
̂i: That is,

�̂r =
1

n

Xn

i=1

̂i; and �̂
 =

1

n� 1
Xn

i=1
(
̂i � �̂r)2 :

Step 3 Construct the following max-type test given by

S
;nT = T � max
1�i�n

[Oi] : (12)

1Note that CRT (2015b) also propose a pre-test for Ft = F for all t: The procedure is exactly identical, but here

we do not consider this test joinly since in practice, the null hypothesis of 
i = 
 becomes of interest.
2Mahalanobis distance is a well known statistic to measure the degree of outlyingness. As 
̂i departs further

from it�s center or central location, the outlyingness approaches to in�nity. There are many statistical outlyingness

functions available. See Zuo and Ser�ing (2000) for more discussions.
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CRT (2015b) shows that S
;nT has a Gumbel distribution. The critical value, c�n; can be
calculated by

c�n = 2 lnn� ln lnn� 2 ln � (1=2)� ln jln (1� �)j2 ; (13)

where � (�) is a gamma function, and � is the signi�cance level.

2.3 BPS Procedure

Both Bai (2009) and Parker and Sul (2016) use the estimated number of common factors to eval-

uate the homogeneous factor loadings. This method can be used for a single panel data or panel

regressions with multiple regressors. Consider a single panel data case �rst. Suppose that a panel

data wit follows a single factor structure given in

wit = ai + 
iFt + w
o
it; (14)

where woit is a pure idiosyncratic term. Then observe this.

_wit =

�

i �

1

n

Xn

i=1

i

��
Ft �

1

T

XT

t=1
Ft

�
+ _woit: (15)

The homogeneity of 
i leads to _wit = _woit: De�ne #(wit) and #̂ (wit) as the true and the estimated

number of common factors to wit; respectively. Then it becomes obvious that

#(wit) = 1 & #( _wit) = 0: (16)

Hence following to Bai and Ng (2002), as n; T !1;

Pr
h
#̂ (wit) = 1

i
= 1 & Pr

h
#̂ ( _wit) = 0

i
= 1; (17)

with a proper information criterion. It is worth noting that this method does not require to estimate


i.

In a regression setting, this method can be easily implemented as well. Here we propose the

following two-step procedure.

Step 1 Run the following two-way �xed e¤ects regression with the homogeneity restriction on �i.

_yit = �
0 _xit + uit: (18)

Get the residuals, ûit = _yit � �̂
0
tfe _xit; where �̂tfe is the LS estimator in (18):

Step 2 Use Bai and Ng�s (2002, BN hereafter) IC2 criterion to estimate the number of common

factors with ûit:
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From (8), it is easy to show only with 
i = 
 and �i = � for all i; the number of common factors

with uit becomes zero.

#(uit) = 0 if 
i = 
 & �i = �. (19)

Otherwise, the true number of common factors with uit becomes a non-zero constant. That is,

#(uit) � 1 if either 
i 6= 
 or �i 6= �. (20)

It is because BPS method is not directly testing the null of 
i = 
; but just focusing on whether

or not uit has a factor structure. If #̂ (ûit) > 0; then the following CCE type regression should be

run.

yit =

(
ai + �

0
ixit + �

0
x;i�xt + �y;i�yt + �it for CCE MG,

ai + �
0xit + �

0
x;i�xt + �y;i�yt + �it for CCEP.

(21)

If #̂ (ûit) = 0; then it implies that both �i = � and 
i = 
 asymptotically. Hence in this case,

the two-way �xed regression in (18) or (1) should be run for the pooled estimator. For the MG

estimation, one can run the following regression.

_yit = �
0
i _xit + �it; (22)

2.4 Summary and Resulting Estimators

We consider the following two cases separately: Pooled and MG estimation. Except for a few,

almost all of empirical studies have considered pooled estimation. Consider the following two

choices as we discussed in Introduction.

Pooled Case: yit =

(
ai + �

0xit + Ft + �it

ai + �
0xit + �

0
x;i�xt + �y;i�yt + �it

(23)

Theoretically, however, there is no particular reason to avoid the MG estimation. Alternatively,

researchers may be interested in individual estimator for the slope coe¢ cient. In this case, the

following two choices are considered.

MG Case:

(
ai + �

0
ixit + Ft + �it

ai + �
0
ixit + �

0
x;i�xt + �y;i�yt + �it

(24)

The �rst and second regressions for each case yields two-way �xed e¤ects (TFE) and CCE esti-

mators, respectively. Let �̂tfe,i be the LS estimator in the �rst regression, and �̂cce,i be the LS

estimator in the second regression in (24). Then the TFE MG and CCE MG estimators can be

constructed by taking the sample cross-sectional averages of �̂tfe,i and �̂cce;i, respectively.

Table 1 shows the results of the BPS and the CRT methods under four di¤erent conditions.

Since the BPS method imposes the homogeneity restriction on the slope coe¢ cients, meanwhile
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the CRT method puts the heterogeneity restriction, the pre-testing results do not alter whether

or not empirical researchers are interested either in pooled or MG estimation. There are two

di¤erences between the BPS and the CRT methods. Table 1 shows the �rst di¤erence between

the two pre-tests. When either �i 6= � or 
i 6= 
; the BPS method always recommends the CCE
estimator. Meanwhile the CRT method precisely di¤erentiates the heterogeneous 
i from the case

of the homogeneous factor loadings. Hence the �rst di¤erence between the two pre-tests happens

when �i 6= � but 
i = 
: If empirical researchers are interested in pooling regressions, then the

BPS method provides a �correct�answer in this case since the regression error, uit; in (18) includes

more than a single factor as it is shown in (20). When the MG estimation becomes of interest, the

situation becomes converted. The CRT method assists a �correct�guide under the case of �i 6= �:
However, it does not imply that the TFE estimator in the case of �i 6= � and 
i = 
 is more e¢ cient
than the CCE-MG estimator. We will investigate this case asymptotically in the next section.

The second di¤erence between the two pre-tests is not shown in Table 1. Precisely speaking, the

BPS method is not a test, but just an identi�cation procedure since the BPS method utilizes BN�s

IC2 criterion. As n; T !1; the probability to select the correct number of common factors becomes
unity. Meanwhile the CRT method is a well constructed test, so that it makes a mistake with �

times, where � is the signi�cance level. This di¤erence is minor, but in Monte Carlo simulation,

this di¤erence matters slightly.

Table 1: Pre-Testing Results Under Various DGPs

Conditions BPS CRT

�i = � & 
i = 
 TFE TFE

�i = � & 
i 6= 
 CCE CCE

�i 6= � & 
i = 
 CCE TFE

�i 6= � & 
i 6= 
 CCE CCE

In the next section, we will provide asymptotic comparison between the two pre-tests.

3 Asymptotic Comparison

We �rst consider the case of �i = � for all i: In the next subsection, we consider the heterogeneity

of �i: As we discussed in the previous section, the results of the asymptotic comparison are hinging

on the assumption of the slope coe¢ cients. Since it is unknown whether or not �i = �; the overall

comparison will be made in the end of this section.

We take the following assumptions.
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Assumption 1 (Common factors) The unobserved common factors, Ft and Gt, are ( r�1) and
(m � 1) covariance stationary, with absolute summable autocovariance, distributed independently
of "it and xois for all i, t and s.

Assumption 2 (Individual-Speci�c Error)

(i) E
�
"itx

o
js

�
= 0, for all i; j; s and t:

(ii) For each i, xoit follows linear stationary processes with absolute summable autocovariance.

Assumption 3 (Factor Loadings) The unobserved factor loadings, 
i, �i and 	i, are indepen-

dently and identically distributed across i, and of individual speci�c errors "jt and xojt, the common

factors, Ft and Gt for all i, j and t with �xed means 
, � and 	, respectively, and �nite variances.

Assumption 4 (Serial and Cross-Sectional Weak Dependence and Heteroskedasticity)

(i) E ("it) = 0 and E j"itj12 �M:

(ii) E ("it"js) = �ij;ts, j�ij;tsj � ��ij for all t; s and j�ij;tsj � � ts for all i; j such that

1

n

nX
i=1

nX
j=1

��ij �M ,
1

T

TX
t=1

TX
s=1

� ts �M ,
1

nT

nX
i=1

nX
j=1

TX
t=1

TX
s=1

j�ij;tsj �M .

(iii) For every t and s, E
��n�1=2Pn

i=1 ["it"js � E ("it"js)]
��4 �M .

(iv) Moreover

T�2n�1
TX
t=1

TX
s=1

TX
p=1

TX
q=1

nX
i=1

nX
j=1

jcov ("it"js; "jp"jq)j �M ,

T�1n�2
TX
t=1

TX
s=1

nX
i=1

nX
j=1

nX
l=1

nX
m=1

jcov ("it"jt; "ls"ms)j �M .

Assumption 5 (Rank Condition) The total number of common factors in the regression error,

uit; is less than or equal to k + 1; where k is the number of regressors.

Assumption 6 (Homogeneous Slope Coe¢ cients) Under homogeneity,

�i = �,

where k�k < M .
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Assumptions 1 and 2 allow for serial and cross-sectional dependences in both common factors

and individual-speci�c errors. Assumption 3 entails the factor loadings, with non-zero �xed means,

to be strong in the sense of Chudik, Pesaran and Tosetti (2011). Assumptions 1 through 3 are fairly

general since the case in which the error components might be correlated with the regressor xit are

not excluded. Assumption 4 allows weak serial and cross-sectional correlation for "it. Assumption

6 restricts �i to be homogeneous.

We de�ne the two pooled estimators:

�̂tfe,p =

�Xn

i=1

XT

t=1
_xit _x

0
it

��1�Xn

i=1

XT

t=1
_xit _yit

�
; (25)

�̂cce,p =
�Xn

i=1
X 0
iMzXi

��1 �Xn

i=1
X 0
iMzYi

�
; (26)

where Xi = [xi1; � � � ; xiT ]0, Yi = [yi1; � � � ; yiT ]0 ; zit = [yit; xit]
0 ; Mz = IT � �Z( �Z 0 �Z)� �Z 0, �Z =

[�z1; � � � ; �zT ]0 ; and �z1 = n�1
Pn
i=1 zi1: Note that ( �Z

0 �Z)� is the generalized inverse of �Z 0 �Z:

The MG estimators are de�ned as

�̂tfe,mg =
1

n

Xn

i=1
�̂tfe,i with �̂tfe,i =

�XT

t=1
_xit _x

0
it

��1�XT

t=1
_xit _yit

�
; (27)

�̂cce,mg =
1

n

Xn

i=1
�̂cce,i with �̂cce,i =

�
X 0
iMzXi

��1 �
X 0
iMzYi

�
: (28)

3.1 Under Homogeneity of Slope Coe¢ cients

When �i = �; both the BPS and the CRT methods provide the same answer as Table 1 showed.

To di¤erentiate the outcomes of the two pre-tests under �i = �; we introduce the notion of a local

heterogeneity of factor loadings.

De�nition 1 (Local-Heterogeneity of 
i) The (r � 1) factor loading vector 
i is locally-
heterogeneous such that


i = 
 + � i; � i � iid(0;
�;i) (29)

where


�;i =

(
0 or � i = 0 if i 2 G

0 or � i 6= 0 if i 2 Gc

(30)

where the number of individuals in Gc is �xed �, which is not dependent on n.

Here we consider a case where 
i 6= 
 for a few individuals. The local heterogeneity implies the

weak factor in Chudik and Pesaran�s (2011) sense if 
 = 0. Note that

E
1

n

Xn

i=1
(
i � 
)2 = 
0=n: (31)
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The condition in (31) states that the common factors Ft are weak factors if 
 = 0. Meanwhile

the weak factors do not imply the local heterogeneity. For example, Reese and Westerlund (2015)

consider the following notion of the weak factors when 
 = 0.

� i = �
o
i =n

� with � 2 [0; 1] and �oi = Op (1) : (32)

Under (32), as n ! 1; the maximum of 
i also converges to zero (or 
 = 0): In this case, CRT�s

(2015b) max-type test fails.3 Because of the same reason, CRT (2015b) assume no weak factor

given in (32).

Next, we will study the asymptotic behavior of the BPS and the CRT pre-testing methods

under the local heterogeneity.

Theorem 1: (Consistency of Tests for Local Heterogeneity of Factor Loadings) Under

local heterogeneity of 
i in (30) and Assumption 1-6,

(i) as n; T !1 with T=n! 0;

lim
n;T!1

Pr[#̂(ûit) = 0] = 1; and (33)

(ii) as n; T !1 with T=n5=3 ! 0 and n=T 3 ! 0;

lim
n;T!1

Pr(S
;nT > c�;n) = 1 (34)

The technical proof of Theorem 1 is in Appendix A. Here we provide an intuitive explanation.

As Parker and Sul (2016) showed, Bai and Ng�s (2002) information criteria (IC) are not precise

enough to detect weak factors. Under the local heterogeneity, the remaining common factor in the

regression residuals, ûit = _yit � �̂
0
tfe,p _xit; contain only a weak factor. Since only a few individuals

are in�uenced by the common factor, Bai and Ng�s IC cannot detect the presence of the common

factor even with very large n and T: Interestingly when the factor loadings to the regression error,


i; is correlated with the factor loadings to the regressors, �i; the TFE estimator has the bias,

which is an Op (1=n) term under the local heterogeneity. Due to this bias, we need the condition of

T=n! 0: Meanwhile the CRT test is based on the maximum value of Mahalanobis distances. The

maximum value is, of course, very sensative to non-zero �i in (30). Hence the CRT method detects

the local heterogeneity very precisely as n; T !1:
Next, we provide an important remark regarding dynamic panel regressions.

3To see this, assume that 
i = 
 + �i; with �i = Op
�
n�1=2

�
: Then as n; T ! 1 with T=n ! 0; the following

condition becomes
T

lnn
k�ik2 =

T

n lnn
Op(1)! 0;

which implies the failure of Theorem 3 in CRT (2015b).
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Remark 1 (Dynamic Panel Regression): A latent model can be written as following:

yit = ai + �yit�1 + �
0
iFt + "it; (35)

or

yit = ai (1� �L)�1 + �0iFt (1� �L)
�1 + "it (1� �L)�1 ;

where L is a lag operator. Let �̂fe be the one-way �xed e¤ect or within group (WG) estimator.

From the direct calculation, as long as the pooled estimator is used, we can show that

~yit � �̂fe~yit�1 = ~"it + �0i ~Ft + (�� �̂fe)~yit�1 = ~"�it + �0i ~F �t ; (36)

where ~F �t = ~Ft + (� � �̂fe)
P1
j=0 �

j ~Ft�1�j ; and ~"�it = ~"it + (� � �̂fe)
P1
j=0 �

j~"it�1�j : Therefore

the number of common factors is not in�uenced by the WG estimation. Hence Theorem 1 holds

continuously.

Under the suitable conditions, both the TFE and the CCE estimators are consistent, and asymp-

totically the modi�ed regressors are independent of the modi�ed regression errors. The main di¤er-

ence between the two variances comes from the asymptotic covariance of the modi�ed regressors.

Interestingly, the CCE estimation cleans up the common components of the regressors e¤ectively by

projecting out the cross-sectional averages of yit and xit: The covariance matrix with the remained

terms becomes asymptotically equivalent to the covariance matrix with the idiosyncratic terms of

xit: Meanwhile the TFE estimation does not e¤ectively eliminate the common components of xit

if the factor loadings to xit are strongly heterogeneous, which results in larger covariance matrix

of the modi�ed regressors. This di¤erence makes that the TFE estimator becomes more e¢ cient

than the CCE estimator in general. Only when the two-way within group transformation cleans up

the common components of xit e¤ectively, the relative variance ratio becomes unity asymptotically.

To be speci�c, we derive the asymptotic variances of the CCE and the TFE estimators under the

local heterogeneity. Since both estimators are consistent under the local heterogeneity, it is not

hard to show that the asymptotic variance ratio of the CCE to the TFE residuals becomes unity as

n; T !1 with T=n! 0: Meanwhile the probability limits of the denominator terms for the CCE

is smaller than that of TFE estimators in general. Let _Xi = [ _xi1; � � � ; _xiT ]0 ; Xo
i = [x

o
i1; � � � ; xoiT ]

0 :

Further de�ne 
cce,p and 
tfe,p as


cce,p = E
1

nT

Xn

i=1
Xo0
i 
";iX

o
i ; & 
tfe,p = E

1

nT

Xn

i=1
_X 0
i
";i _Xi; (37)

and

Qcce,p = plimn;T!1
1

nT

Xn

i=1
Xo0
i X

o
i ; & Qtfe,p = plimn;T!1

1

nT

Xn

i=1
_X 0
i
_Xi: (38)
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Theorem 2 (Comparison of Asymptotic Variances) Under Assumption 1-6, as n; T !1
with T=n! 0,

(i) the asymptotic variances of TFE and CCE pooled estimators are given by

V`,p = Q
�1
`,p
`,pQ

�1
`,p ; (39)

where ` 2 fcce, tfeg :
(ii) Under i.i.d. assumption of "it over i and t; the relative variance ratio satis�es

Vcce,p � Vtfe,p (40)

The proof of Theorem 2 is straightforward, hence it is omitted. Note that Pesaran (2006) already

showed the asymptotic variance of the CCE pooled estimator. Here we merely changed the weight

function in Pesaran�s (2006) case. The result for the asymptotic variance of the TFE estimator

may be new, but nothing special. When "it is not i.i.d over t, it is still easy to show that Theorem

2 (ii) holds. Note that Qcce,p � Qtfe,p always as long as �i 6= � 6= 0: Also it is easy to show that

cce,p � 
tfe,p since _Xi = _Xo

i +
~�i ~Ft + ~	i ~Gt so that E _Xi"i"0i _Xi � E _Xo

i "i"
0
i
_Xo
i = EXo

i "i"
0
iX

o
i as

n; T !1: When "it is not i.i.d. over i; it is not easy to show that Theorem 2 (ii) holds unless we

know the weak dependence structure. The equality holds only when ~�i = ~	i = 0 for all i:

Next, we provide a couple of important remarks.

Remark 2 (Requirement of the T=n ratio) There are some special cases where the CCE

pooled estimator becomes inconsistent. See Westerlund and Urbain (2014) for more detailed dis-

cussions even under the presence of strong factors. For more detailed conditions under strong

factors, see Westerlund and Urbain (2018). Meanwhile see Reese and Westerlund (2015) for the

case of weak factors. When either the rank condition or the T=n ratio does not hold, the CCE

estimator becomes seriously biased. In practice, it is not known whether or not T=n ! 0 since

both T and n is �xed. If n < T or n ' T; then using lower time frequency data, for example annual
data rather than month data, leads to decrease the number of time series observations, but keep

the entire time length.

Remark 3 (Asymptotic variance of the MG estimators) It is well known that the pooled

estimator can be re-written as

�̂`,p =

Pn
i=1W`;i�̂`;iPn
i=1W`;i

with ` 2 fcce,tfeg ; (41)
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where the weight function W`;i is given by

W`;i =

(
T�1Xo0

i X
o
i if ` = cce

T�1 _X
0
i
_Xi if ` = tfe

: (42)

When �i = � for all i; it is easy to show that the asymptotic variance of the CCE MG estimator

is relatively larger than that of the TFE MG estimator under i.i.d assumption of "it over t and i:

We combine the result of Theorem 1 with Theorem 2 together. De�ne the pooled BPS estimator

as

�̂BPS,p =

(
�̂tfe,p if #̂(ûit) = 0

�̂cce,p o.w.
: (43)

Alternatively, we can de�ne the BPS and CRT estimators as

�̂m,p = !m�̂tfe,p + (1� !m)�̂cce,p; with m 2 fBPS, CRTg

where !BPS = 1[#̂(ûit) = 0] and !CRT = 1 (S
;NT � c�;N ). Note that 1 (�) is an indicator function.
The asymptotic variances of the BPS and CRT estimators can be written as

V (�̂m,p) = !mVtfe,p + (1� !m)Vcce,p:

Similarly we can de�ne the MG BPS and CRT estimators as follow.

�̂m,mg = !m�̂tfe,mg + (1� !m)�̂cce,mg; with m 2 fBPS, CRTg :

Note that the indicator function is not dependent on the choice of the MG or pooled estimation.

Now, we are ready to propose the following Theorem.

Theorem 3 (Asymptotic Comparison under Homogeneous Slope Coe¢ cients) Under

Assumptions 1-6, as n; T !1 with T=n! 0 and n=T 3 ! 0;

VCRT,p � VBPS,p; & VCRT,mg � VBPS,mg: (44)

Note that Theorem 3 holds when �i = � by Assumption 6. The equality holds if !BPS = !CRT :

Note that there are two cases that the equality holds always. The �rst case is when regressors

have same or zero factor loadings (~�i = ~	i = 0 for all i): In this case, the BPS estimator becomes

equivalent to the CRT estimator. The second case is when 
i 6= 
 for all i: In this case, the equality
holds since the power of the CRT test is always unity. Meanwhile under the null of 
i = 
; the

variance of the CRT estimator is always greater than that of the BPS estimator since !CRT = 1

with �% times. Lastly, under the local heterogeneity such that 
i 6= 
 for some i; the inequality

holds since asymptotically !CRT converges to unity, but !BPS converges to zero.

Next, we consider the case where �i 6= �:

14



3.2 Under Heterogeneity of Slope Coe¢ cients

Since the slope coe¢ cients are heterogeneous, we need to change Assumption 6 to 6A.

Assumption 6A (Heterogeneous Slope Coe¢ cients) Under heterogeneity,

�i = � + �i, with �i � iid (0;
�) ; (45)

where k�k < M , k
�k < M , 
� is a k�k symmetric nonnegative de�nite matrix, and the random
deviations �i are distributed independently of 
j, �i, 	i, "jt, vjt for all i and j.

Assumption 6A is the standard assumption for the heterogeneous slope coe¢ cients. Note that we

need particularly the independence between �i and the second central moments of regressors, which

can be interpreted as the independence between �i and �i or 	i: Otherwise, any pooled estimator

leads to inconsistency due to the correlation between weights and �i in (41):

It is very important to note that even when 
i = 
 for all i; the regression error has heterogeneous

factor loading coe¢ cients under the presence of �i 6= � for all i: To see this, assume 
i = 
 = 1

and rewrite the true data generating process in (1) as

yit = ai + �
0
ixit + Ft + "it: (46)

Imposing the homogeneity restriction on the slope coe¢ cients leads to

yit = ai + �
0xit + Ft + eit; with eit = �0i�iFt + �

0
i	iGt + �

0
ix
o
it + "it: (47)

Only when �i = 	i = 0 for all i; the regression error, eit; does not have any factor structure.

Otherwise, the factor loadings with eit are always heterogeneous under �i 6= � even when 
i = 
:
Suppose that empirical researchers are interested only in pooled estimators. Then the CRT�s

procedure becomes invalid in this case since the CRT�s max-type test examines only whether or

not 
i = 
: Assumption 6A does not allow any dependence between �i and factor loadings of �i or

	i: If �i is correlated with either of them, then the TFE estimator becomes inconsistent. In this

case, the CRT method may leads to inconsistent estimation if Assumption 6A is violated. What

if we impose the homogeneity restriction of �i in (10)? Unfortunately, this restriction may solves

this issue, but in this case the CRT�s test does not examine the homogeneity of factor loadings

of 
i any more, which is the original purpose of the CRT�s test. Interestingly, the BPS method

works consistently under the heterogeneity of �i: Since the BPS method is based on the estimated

number of common factors from the regression residuals, this method always suggests to run the

CCE regression as long as �i 6= �; regardless of 
i = 
: As shown in Table 1, this is the reason that
the two methods suggest di¤erent solutions when �i 6= � but 
i = 
:
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The following lemma shows when the TFE estimator has a di¤erent limiting distribution from

the CCE pooled estimator under �i 6= �:

Lemma 1: (Asymptotic Di¤erence between TFE and CCE Pooled Estimators under

Heterogeneous Slope Coe¢ cients) Under Assumption 1-5 and 6A, If either �i 6= 0 or

	i 6= 0; but 
i = 
;
(i) then as n; T !1 with T=n! 0;



�̂cce,p � 1

n

Xn

i=1
�i





 = Op �n�1=2T�1=2� ; (48)

(ii) as n; T !1,



�̂tfe,p � 1

n

Xn

i=1
�i





 = Op �n�1=2�+Op �n�1=2T�1=2� : (49)

See Appendix C for the detailed proof of Lemma 1. Here we provides intuitive explanations about

the asymptotic di¤erence between the TFE and the CCE pooled estimators under �i 6= �: Under
cross-sectional independence or the case of �i = 	i = 
i = 0; the within group estimator shares

the same limiting distribution of the sample mean of �i: When the rank condition is satis�es, the

cross-sectional averages of yit and xit eliminates the common components e¤ectively, which leads

to the same conclusion under the conditions of �i 6= 0 or 	i 6= 0: Lemma 1 (i) shows that the

CCE pooled estimator shares the same limiting distribution of the sample mean of �i: Note that

�̂cce,p � � = Op
�
n�1=2

�
, and n�1

Pn
i=1 �i � � = Op

�
n�1=2

�
: Meanwhile when �i 6= 0 or 	i 6= 0;

but �i 6= �; imposing the homogeneity restriction of �i make the regression error in (47) included
the common factors. Even though, the TFE estimator is consistent because of Assumption 6A or

independence between �i and the rest of factor loadings, but the TFE estimator is not e¢ cient.

The limiting distribution of the TFE estimator is much similar to the CCE pooled estimator when

the rank condition is not satisi�ed, since the new factor loadings �0i�i and �
0
i	i are not correlated

with �i and 	i: Lemma 1 (ii) in (49) re�ects this fact, and shows that the TFE estimator is less

e¢ cient than the CCE pooled estimator. Of course, when both �i = 	i = 0 and 
i = 
; then as

n; T !1 



�̂tfe,p � 1

n

Xn

i=1
�i





 = 



�̂cce,p � 1

n

Xn

i=1
�i





 = Op �n�1=2T�1=2� : (50)

Now we are ready to present the following Corollary.
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Corollary 3-1: (Asymptotic Comparison for Pooled Estimators under Heterogeneous

Slope Coe¢ cients) Under Assumptions 1-5 and 6A, as n; T !1 with T=n! 0 and n=T 3 ! 0;

VCRT,p � VBPS,p: (51)

The proof of Corollary 3-1 is straightforward, hence it is omitted. Table 1 shows that when 
i 6=

 but �i 6= �; the BPS method always suggests the CCE, meanwhile the CRT method suggests

the CCE estimator for (1 � �)% times and the TFE estimator for �% times. Note that the TFE

estimator in this case is still consistent since the correlation between common factors are washed

out by taking o¤ the cross-sectional averages under Assumption 6A. If Assumption 6A violates,

that is, if either 
i is correlated with �i; or �i is correlated with any of factor loadings, then the

TFE estimator becomes inconsistent. However even under Assumption 6A, the TFE estimator is

ine¢ cient compared with the CCE estimator as Lemma 1 (1) shows. Hence in the case of 
i 6= 
 but
�i 6= �; the BPS method becomes more e¤ective. When 
i = 
 but �i 6= �; the CRT method

always suggests the TFE estimation, but the BPS method always suggests the CCE estimation

asymptotically. Hence from Lemma 1, the BPS method leads to more an e¢ cient estimation.

Since the MG estimation is sometimes robust than the pooled estimation as Lee and Sul (2019)

suggest, there is little theoretical justi�cation to use a pooled estimation. In fact, the MG estimation

is also one of ways to pool the cross and time series information as shown in (41). Only the di¤erence

between the MG and pooled estimators are weight functions: The MG estimation assigns an equal

weight, 1=n, meanwhile the pooled estimation assigns heavier weights if the variances of regressors

are larger.

Next, we consider the case where the MG estimation becomes of interest to empirical researchers.

Suppose that the CRT�s test does not reject the null of 
i = 
: Then the TFE MG estimator in

(27) is expected to use. That is, the following regression is supposed to be run instead.

yit = ai + �
0
ixit + Ft + "it: (52)

Interestingly, it is not straightforward to run (52). The typical two-way �xed e¤ects transformation

leads to

_yit = �
0
i _xit + eit; (53)

where

eit = �it + _"it; with �it = �
0
i

1

n

Xn

i=1
~xit �

1

n

Xn

i=1
�0i~xit:

Since the cross-sectional average of ~xit approximates the common factors to ~xit; �it can be treated

as additional common components in the modi�ed error term, eit in (53). The existence of �it
in�uences on the asymptotic variance of the TFE estimator.
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Lemma 2: (Asymptotic Di¤erence between TFE and CCE MG Estimators under

Heterogeneous Slope Coe¢ cients) Under Assumption 1-5 and 6A, If either �i 6= 0 or

	i 6= 0; but 
i = 
; as n; T !1,



�̂tfe,mg � 1

n

Xn

i=1
�i





 = Op �n�1=2�+Op �n�1=2T�1=2� : (54)

Appendix C provides the proof of Lemma 2. There are various other ways to reduce the asymptotic

variance. For example, an iterative method must work in this case. Let �̂
1

i be the �rst stage

estimator for each i based on (53). Next, estimate the common factor by taking the cross-sectional

average of the following residuals.

F̂t;c =
1

n

Xn

i=1

�
~yit � �̂

10
i ~xit

�
: (55)

Next let �̂
2

i be the second stage estimator for each i in the following regression.

~yit � F̂t;c = �0i~xit + errorit (56)

Repeating (55) and (56) until the LS estimator converges. This estimator is almost equivalent to

the IE estimator proposed by Bai (2009). Instead of the PC estimation for Ft; here we use the

cross-sectional average of the residuals. However we do not consider this estimator further simply

because this new iterative estimator cannot be viewed as a TFE estimator anymore.

Corollary 3-2: (Asymptotic Comparison for MG Estimators under Heterogeneous

Slope Coe¢ cients) Under Assumptions 1-5 and 6A, as n; T !1;

VCRT,mg � VBPS,mg:

The proof Corollary 3-2 is rather minor, and hence it is omitted. Constrast to Corollary 3-1, here

the T=n ratio requirement is not needed simply because �i 6= �: When 
i 6= 
, both the CRT and
the BPS methods suggest to use the CCE-MG estimation. Also when regressors do not include

any common factors, or factor loading coe¢ cients are homogeneous across i; Lemma 2 does not

hold, and it is easy to show that



�̂tfe,mg � n�1Pn

i=1 �i




 = Op �n�1=2T�1=2� : Hence in this case,
the TFE-MG estimator becomes asymptotically equivalent to the CCE-MG estimator. Except for

these two cases, the BPS method always leads to more e¢ cient estimation.
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4 Monte Carlo Simulations

This section examines theoretical �ndings of this paper, and investigates how the pre-testing meth-

ods perform in �nite samples by means of Monte Carlo simulations. The data generating process

(DGP) is given by

yit =
2X
j=1

�j;ixj;it + 
iFt + "it;

where each regressor has the following factor structure.

xj;it = �j;iFt + �j;iGt + x
o
j;it for j = 1; 2:

Based on restrictions on factor loadings with xj;it, the following two cases are considered: �ji 6= 0;
�ji 6= 0 v.s. �ji = �ji = 0: In the �rst case, both regressors have two common factors. �ji is

possibly correlated with 
i. The second case does not allow any cross sectional dependence in the

regressors. All commom factors, "it, and xoj;it are drawn from iidN (0; 1), factor loadings are drawn

from iidN (1; 1). Here we report only the �rst case to save the space. All other simulation results

are reported online.

We compare the �nite sample performances of the following three estimators: BPS, CRT and

CCE pooled and MG estimators. Note that the CCE estimator is robust compared with the BPS

or the CRT estimator since the factor augmented regression nests the TFE regression. We �rst

consider the �nite sample performances of three estimators under the case of the homogeneous

slope coe¢ cients.

We set �1i = �2i = 1: Table 2 shows the �nite sample performances of three estimators when


i = 
: As we discussed in Section 2, IC2 always selects the correct number of common factors.

Surprisingly even with small n and T; IC2 never fails. Meanwhile the S
;nT statistic shows somewhat
a mild size distortion with small n: The nominal size used in the test is 5%. With n = 25; the size

of the test is slowly decreasing over T , but never reach at the 5% level even with T = 200: However

as n increases, the size distortion quickly disappears. With n = T = 200; the CRT test shows

little size distortion. As Theorem 3 states, the variance of the BPS pooled estimator is always the

smallest among three pooled estimators. Only when the regressors do not have any factor structure

or �ji = �ji = 0; the variances of other pooled estimators are similar to the variance of the BPS

pooled estimator. See the online supplementary appendix for more detailed evidences. Meanwhile

the variance of the BPS-MG estimator is more or less similar to that of the CRT-MG etimator.

The CCE pooled and MG estimators are robust but least e¢ cient.

Table 3 reports the case of 
i 6= 
: Evidently, both the BPS and the CRT methods detect this
case precisely, which leads to the relative variance ration becomes unity. Also note that in this

case, both the BPS and CRT methods always suggest the CCE estimation. Hence the relative
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variance ratio of the CCE pooled to the BPS pooled estimator becomes unity. The similar �nding

is observed for the case of the MG estimation.

Table 4 displays the case of the local heterogeneous factor loadings. Only one factor loading is

di¤erent from the rest. As Theorem 1 shows, the CRT detects this case precisely even with large

n. As either n or T ! 1; the rejection rate becomes unity. Meanwhile the BPS method fails to
detect the local heterogeneity, so that the BPS method always suggests the TFE estimation. As

Theorem 2 states, in this case, the variance of the TFE estimator is smaller than that of the CCE

estimator. Meanwhile the CRT method is suggesting the CCE estimation more as n; T !1: Hence
asymptotically the variance of the BPS estimator is smaller than either CCE or CRT estimator.

By combining all results from Table 2, 3 and 4, we can con�rm our theoretical �ndings in Theorem

3.

Next, we investigate the �nite sample performance under heterogeneous slope coe¢ cients. Table

5 reports the case where �i 6= � but 
i = 
: As shown in Table 1, the BPS method suggests the

CCE estimator, meanwhile the CRT method leads to the TFE estimator. As n; T ! 1 jointly,

the CRT method selects the TFE estimation more. As shown in Lemmas 1 and 2, both the BPS

pooled or MG estimator is more e¢ cient than the CRT pooled or MG estimator.

Table 6 shows the case where �i 6= � and 
i 6= 
: In this case, both pre-testing procedures

suggest the CCE estimator. Hence the variance ratio becomes unity even with small n and T:

5 Conclusion

This paper compared the e¤ectiveness of the two pre-testing procedures �BPS and CRT methods

�asymptotically, and showed that the BPS method is more e¤ective. When the slope coe¢ cients

are homogeneous, the BPS and the CRT methods are basically same except for the case of the

local heterogeneity of the factor loadings. Of course, the CRT method is based on a max-type

test so that it allows some minor mistakes under the homogeneous factor loadings. Surprisingly,

when the slope coe¢ cients are heterogeneous, the BPS always suggests to run correctly a speci�ed

regression. Meanwhile the original CRT method fails to suggest under the homogeneous factor

loading case. We did not consider to alter the original CRT method in this paper, which does not

impose the homogeneous restriction on the slope coe¢ cients, but if the restriction is imposed, then

the modi�ed CRT method restores the virtue except for the local heterogeneity case.

Nonetheless, the �nding of this paper is helpful for empirical researchers. After a TFE regression

is run, a simple BPS procedure can be run to check whether or not a factor augmented regression

is needed to run.
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Technical Appendix

Appendix A: Proof of Theorem 1

Part I:

First, we show

E
�
1

n

Xn

i=1
~
0i~
i

�
= Op

�
n�1

�
,

under the local heterogeneity de�ned in De�nition 1. Assume without loss of generality that the

number of individuals in Gc, � = 1, such that


i =

(

 if i < n


 + �n with �n � iid (0;
0) if i = n
:

Then the cross-sectional mean of 
i becomes

1

n

Xn

i=1

i = 
 +

1

n

Xn

i=1
� i = 
 +

�n
n
;

and the demeaned factor loading is given by

~
i = 
i �
1

n

Xn

i=1

i =

8<: ��n
n

if i < n
n� 1
n

�n if i = n
;

in light of which, the following holds,

E
�
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n

Xn

i=1
~
0i~
i

�
=
1

n
E

"
n�1X
i=1

1

n2
� 0n�n +

�
n� 1
n

�2
� 0n�n

#
=
1

n

0 +Op

�
n�2

�
: (57)

Next, we derive the order of residual, ûit, obtained using BPS method. De�ne

ûit = _yit � �̂
0
tfe,p _xit =

�
� � �̂tfe,p

�0
_xit + _uit; (58)

where

_uit = ~

0
i
~Ft + _"it:

Consider the �rst term in (58). The TFE pooled estimator is given by

�̂tfe,p � � =

 
nX
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0
it
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where

I =
1

nT

XT

t=1

Xn

i=1
~�0i ~Ft ~F

0
t ~
i;

II =
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�
~F 0t ~
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i
:

Note that E _xit _"js = E
h�
~�0i
~Ft + ~	0i

~Gt + _xoit

�
_"js

i
= 0 for all i; j; s; t, so
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0
it

!�1
1

nT

nX
i=1

TX
t=1

_xit _"it = Op

�
(nT )�1=2
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Next, consider I. By Assumption 1, we have 1
T

PT
t=1

~Ft ~F
0
t !p �F . If �i is correlated with 
i, such

that �i = q
i + �
o
i , where �

o
i is independent of 
i, I is biased, and the order of which is given by
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which is the same as the bias of CCEP estimator. If �i is not correlated with 
i, such that
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then the following holds,
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which implies I = Op
�
n�1

�
.
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For II, �rst note that E (II) = 0 if 	i is independent of 
i. Then it holds that
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Putting all together, we have

�̂tfe,p � � = Op
�

1p
nT

�
+Op

�
1

n

�
+Op

�
1

n
p
T

�
: (59)

This implies that we need the T=n ! 0 condition for the consistency of TFE estimator under the

local heterogeneity. That is,

p
nT (�̂tfe,p � �) = Op

�p
T=n

�
+Op (1) +Op

�
1=
p
n
�
:

For the second term in (57), it holds that

_uit =

8><>:
� 1
n
� 0n ~Ft + _"it if i < n

n� 1
n

� 0n ~Ft + _"it if i = n
: (60)

De�ne � = #̂ (ûit (�)). Combining (59) and (60) yields
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Last, we need to show that under the local heterogeneity of 
i,

lim
n;T!1

Pr
h
#̂ (ûit (�)) = 0

i
= 1;

We shall prove for all 0 < � � �max,

lim
n;T!1

Pr [IC2(�) < IC2(0)] = 0;

where
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;

25



V̂ (�) =
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Part II

See the proof of Theorem 3 in CRT (2015b).

Appendix B: Proof of Theorem 3

There are three sub-cases: Under the null, alternative and local heterogeneity. We consider each

case separately, and then combine them together later.

Case A: Under the null of 
i = 
 As n; T !1; it is easy to show that

lim
n;T!1

!BPS = lim
n;T!1

Pr[#̂(ûit) = 0] = 1:

Meanwhile as n; T !1 with T=n5=3 ! 0 and n=T 3 ! 0; CRT (2015b) showed that

lim
n;T!1

!CRT = lim
n;T!1

Pr(S
;nT � c�;n) = �:

Hence

lim
n;T!1

�̂BPS,p = �̂tfe,p; lim
n;T!1

�̂CRT,p = ��̂tfe,p + (1� �) �̂cce,p:

Since Vcce,p � Vtfe,p in this case, the following inequality holds.

VBPS,p � VCRT,p

Similarly, we can show that

lim
n;T!1

�̂BPS,mg = �̂tfe,mg; lim
n;T!1

�̂CRT,mg = ��̂tfe,mg + (1� �) �̂cce,mg;

and

VBPS,mg � VCRT,mg

Case B: Under the alternative In this case, both the BPS and CRT methods suggest the

CCE estimation. Hence we have

VBPS,p = VCRT,p; & VBPS,mg = VCRT,mg

Case C: Under the local heterogeneity Under the local heterogeneity, as n; T ! 1 with

T=n! 0; the BPS method suggests asymptotically,

lim
n;T!1

!BPS = lim
n;T!1

Pr[#̂(ûit) = 0] = 1;
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meanwhile as n; T !1 with T=n5=3 ! 0 and n=T 3 ! 0; the CRT method suggests

lim
n;T!1

!CRT = lim
n;T!1

Pr(S
;nT � c�;n) = 0:

Hence it is easy to show that

lim
n;T!1

�̂BPS,p = �̂tfe,p; lim
n;T!1

�̂CRT,p = �̂cce,p:

Similary,

lim
n;T!1

�̂BPS,mg = �̂tfe,mg; lim
n;T!1

�̂CRT,mg = �̂cce,mg:

Therefore

VBPS,p � VCRT,p; & VBPS,mg � VCRT,mg

Combining all three cases, we can verify (44).

Appendix C:

Proof of Lemma 1

Let Pt = [Ft; Gt]
0 and �i = [�0i;	

0
i] : Then we rewrite the panel regression as

yit = ai + �
0xit + Ft + eit;

xit = �iPt + x
o
it:

and
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0
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Consider the numerator term �rst.
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where ~�i = �i � 1
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0
i~�i: Without a loss of generality, we may let

1
T
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~Pt ~P
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introduce an invertable rotating matrix H: As CRT (2015b) did, we further let H = I for the

notational simplicity. Then we have
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since E~�i~#i = 0 and their second moments are �nite by Assumption 3 and 6A.
Next, consider II. By the mutual independence of �i, Pt, xojs and �m for all i; j;m; t and s, it

follows that
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Similarly, xit is independent of �0jx
o
js and "js for all i; j; t and s, it holds that
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where 'it = ~x
o0
it~�i � 1

n

Pn
i=1 ~x

o0
it~�i.

Next, we need to show that �̂cce,p � 1
n

Pn
i=1 �i = Op

�
n�1=2T�1=2

�
; which was already shown

in the eq. (57) in Pesaran (2006): When the rank condition is satis�ed, the �rst term disappears.

Only when the rank condition is not satis�ed, the �rst term should be included. In this case, the

CCE pooled estimator is not e¢ cient compared with the TFE estimator.

Proof of Lemma 2

Let 
i = 
 = 1 without a loss of generality. The TFE transformation leads to
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Consider the numerator term �rst.
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since E~�i%i = 0 and their second moments are �nite by Assumption 3 and 6A.
Next, consider II. By the mutual independence of �i, Pt, xojs and �m for all i; j;m; t and s, and
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Table 2: Finite sample peformances of pre-testing procedures

under homogeneous factor loadings and slope coe¢ cients

Pooled Case MG Case

Frequencies� Variance Comparison Variance Comparison

n T IC2 > 0 S
;nT > c�;n VBPS,p
VCRT,p
VBPS,p

VCCE,p
VBPS,p

VBPS,mg
VCRT,mg
VBPS,mg

VCCE,mg
VBPS,mg

25 25 0.000 0.255 0.304 1.516 2.997 0.530 1.281 2.040

25 50 0.000 0.185 0.148 1.345 2.709 0.239 1.172 1.803

25 100 0.000 0.159 0.072 1.319 2.736 0.113 1.159 1.805

25 200 0.000 0.139 0.036 1.333 2.778 0.055 1.164 1.855

50 25 0.000 0.210 0.143 1.531 3.245 0.250 1.264 2.144

50 50 0.000 0.131 0.071 1.268 2.972 0.120 1.125 1.875

50 100 0.000 0.099 0.035 1.200 2.971 0.058 1.086 1.845

50 200 0.000 0.090 0.017 1.118 2.882 0.028 1.036 1.786

100 25 0.000 0.174 0.070 1.414 3.257 0.128 1.203 2.078

100 50 0.000 0.107 0.035 1.229 3.057 0.058 1.103 1.966

100 100 0.000 0.084 0.017 1.176 3.118 0.029 1.069 1.897

100 200 0.000 0.079 0.009 1.111 2.889 0.014 1.071 1.857

200 25 0.000 0.178 0.036 1.417 3.333 0.066 1.182 2.106

200 50 0.000 0.097 0.017 1.235 3.059 0.028 1.107 1.964

200 100 0.000 0.075 0.008 1.250 3.250 0.014 1.071 1.929

200 200 0.000 0.056 0.004 1.250 3.250 0.007 1.000 1.857

Note: *) The nominal size equals 5%. All variances are multiplied by 103:
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Table 3: Finite sample peformances of pre-testing procedures

under heterogeneous factor loadings but homogeneous slope coe¢ cients

Pooled Case MG Case

Frequencies Variance Comparison Variance Comparison

n T IC2 > 0 S
;nT > c�;n VBPS,p
VCRT,p
VBPS,p

VCCE,p
VBPS,p

VBPS,mg
VCRT,mg
VBPS,mg

VCCE,mg
VBPS,mg

25 25 0.990 1.000 1.043 0.998 0.998 1.199 0.997 0.997

25 50 1.000 1.000 0.465 1.000 1.000 0.495 1.002 1.002

25 100 1.000 1.000 0.229 1.000 1.000 0.236 1.000 1.000

25 200 1.000 1.000 0.109 1.000 1.000 0.110 1.000 1.000

50 25 1.000 1.000 0.482 1.000 1.000 0.565 1.000 1.000

50 50 1.000 1.000 0.223 1.000 1.000 0.239 1.000 1.000

50 100 1.000 1.000 0.107 1.000 1.000 0.111 1.000 1.000

50 200 1.000 1.000 0.054 1.000 1.000 0.054 1.000 1.000

100 25 1.000 1.000 0.241 1.000 1.000 0.279 1.000 1.000

100 50 1.000 1.000 0.109 1.000 1.000 0.116 1.000 1.000

100 100 1.000 1.000 0.052 1.000 1.000 0.054 1.000 1.000

100 200 1.000 1.000 0.025 1.000 1.000 0.026 1.000 1.000

200 25 1.000 1.000 0.121 1.000 1.000 0.140 1.000 1.000

200 50 1.000 1.000 0.055 1.000 1.000 0.059 1.000 1.000

200 100 1.000 1.000 0.026 1.000 1.000 0.027 1.000 1.000

200 200 1.000 1.000 0.013 1.000 1.000 0.013 1.000 1.000
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Table 4: Finite sample peformances of pre-testing procedures

under local heterogenous factor loadings and homogeneous slope coe¢ cients

Pooled Case MG Case

Frequencies Variance Comparison Variance Comparison

n T IC2 > 0 S
;nT > c�;n VBPS,p
VCRT,p
VBPS,p

VCCE,p
VBPS,p

VBPS,mg
VCRT,mg
VBPS,mg

VCCE,mg
VBPS,mg

25 25 0.000 0.845 0.549 1.590 1.689 0.705 1.451 1.545

25 50 0.000 0.953 0.360 1.189 1.172 0.400 1.123 1.133

25 100 0.000 0.993 0.298 0.695 0.681 0.269 0.796 0.788

25 200 0.000 0.999 0.248 0.415 0.415 0.208 0.505 0.505

50 25 0.000 0.823 0.198 2.116 2.384 0.300 1.657 1.837

50 50 0.000 0.950 0.122 1.721 1.762 0.155 1.432 1.465

50 100 0.000 0.994 0.088 1.136 1.136 0.092 1.130 1.130

50 200 0.000 1.000 0.066 0.742 0.742 0.062 0.806 0.806

100 25 0.000 0.784 0.087 2.333 2.655 0.142 1.761 1.951

100 50 0.000 0.934 0.048 2.063 2.125 0.066 1.621 1.667

100 100 0.000 0.990 0.031 1.742 1.742 0.038 1.447 1.447

100 200 0.000 1.000 0.021 1.190 1.190 0.022 1.182 1.182

200 25 0.000 0.754 0.039 2.564 3.051 0.067 1.836 2.075

200 50 0.000 0.915 0.020 2.500 2.650 0.031 1.742 1.839

200 100 0.000 0.987 0.012 2.167 2.167 0.017 1.588 1.588

200 200 0.000 0.999 0.007 1.857 1.857 0.009 1.444 1.444
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Table 5: Finite sample peformances of pre-testing procedures

under homogeneous factor loadings but heterogeneous slope coe¢ cients

Pooled Case MG Case

Frequencies Variance Comparison Variance Comparison

n T IC2 > 0 S
;nT > c�;n VBPS,p
VCRT,p
VBPS,p

VCCE,p
VBPS,p

VBPS,mg
VCRT,mg
VBPS,mg

VCCE,mg
VBPS,mg

25 25 1.000 0.320 22.86 1.525 0.999 20.82 1.247 1.000

25 50 1.000 0.251 21.57 1.666 1.000 20.45 1.288 1.000

25 100 1.000 0.246 21.37 1.657 1.000 20.76 1.254 1.000

25 200 1.000 0.295 20.25 1.577 1.000 19.93 1.203 1.000

50 25 1.000 0.253 11.92 1.647 1.000 10.63 1.246 1.000

50 50 1.000 0.171 10.50 1.767 1.000 10.02 1.276 1.000

50 100 1.000 0.153 10.41 1.803 1.000 10.06 1.243 1.000

50 200 1.000 0.147 10.40 1.836 1.000 10.32 1.300 1.000

100 25 1.000 0.197 5.603 1.801 1.000 5.077 1.321 1.000

100 50 1.000 0.124 5.311 1.911 1.000 5.030 1.286 1.000

100 100 1.000 0.095 5.164 2.025 1.000 4.983 1.298 1.000

100 200 1.000 0.092 5.078 1.968 1.000 5.000 1.303 1.000

200 25 1.000 0.179 2.932 1.796 1.000 2.667 1.272 1.000

200 50 1.000 0.100 2.694 1.952 1.000 2.562 1.310 1.000

200 100 1.000 0.072 2.644 1.985 1.000 2.578 1.263 1.000

200 200 1.000 0.063 2.591 1.969 1.000 2.557 1.282 1.000
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Table 6: Finite sample peformances of pre-testing procedures

under heterogeneous factor loadings and slope coe¢ cients

Pooled Case MG Case

Frequencies Variance Comparison Variance Comparison

n T IC2 > 0 S
;nT > c�;n VBPS,p
VCRT,p
VBPS,p

VCCE,p
VBPS,p

VBPS,mg
VCRT,mg
VBPS,mg

VCCE,mg
VBPS,mg

25 25 1.000 1.000 26.205 1.000 1.000 21.588 1.000 1.000

25 50 1.000 1.000 23.696 1.000 1.000 20.466 1.000 1.000

25 100 1.000 1.000 23.292 1.000 1.000 20.290 1.000 1.000

25 200 1.000 1.000 22.985 1.000 1.000 19.830 1.000 1.000

50 25 1.000 1.000 12.315 1.000 1.000 10.546 1.000 1.000

50 50 1.000 1.000 11.690 1.000 1.000 10.443 1.000 1.000

50 100 1.000 1.000 11.089 1.000 1.000 10.289 1.000 1.000

50 200 1.000 1.000 10.579 1.000 1.000 9.826 1.000 1.000

100 25 1.000 1.000 6.128 1.000 1.000 5.275 1.000 1.000

100 50 1.000 1.000 5.476 1.000 1.000 5.073 1.000 1.000

100 100 1.000 1.000 5.164 1.000 1.000 4.909 1.000 1.000

100 200 1.000 1.000 5.292 1.000 1.000 5.162 1.000 1.000

200 25 1.000 1.000 3.061 1.000 1.000 2.671 1.000 1.000

200 50 1.000 1.000 2.678 1.000 1.000 2.543 1.000 1.000

200 100 1.000 1.000 2.604 1.000 1.000 2.504 1.000 1.000

200 200 1.000 1.000 2.538 1.000 1.000 2.503 1.000 1.000
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